

AFRL-IF-RS-TR-2004-29

Final Technical Report
February 2004

ARCHITECTURE AND PROTOTYPE OF AN
AMBIENT COMPUTATIONAL ENVIRONMENT

University of Kansas Center for Research, Incorporated

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J960

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

Copyright © 2003: University of Kansas, All rights reserved.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2004-29 has been reviewed and is approved for publication.

APPROVED: /s/

ROBERT L. KAMINSKI
Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
FEBRUARY 2004

3. REPORT TYPE AND DATES COVERED
Final Jun 00 – Jun 03

4. TITLE AND SUBTITLE
ARCHITECTURE AND PROTOTYPE OF AN AMBIENT COMPUTATIONAL
ENVIRONMENT

6. AUTHOR(S)
Gary J. Minden, Joseph B. Evans, Arvin Agah,
Jeremiah W. James, and Leon Searl

5. FUNDING NUMBERS
C - F30602-00-2-0581
PE - 62301E
PR - J960
TA - 21
WU - A1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Kansas Center for Research, Incorporated
2335 Irvin Hill Road
Lawrence Kansas 66044-7612

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFG
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2004-29

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Robert L. Kaminiski/IFG/(315) 330-1865/ Robert.Kaminiski@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This Final Report describes the performer’s effort of the design, development and initial prototype implementation of an
Ambient Computational Environment (ACE). The concept began with the idea that computation resources, in the
broadest sense, are readily available in our offices, conference rooms, auditoriums, and hallways. Users co-opt, with
authorization, the computational resources within their proximate area. Users access computational services that are
long-lived and extremely robust.

15. NUMBER OF PAGES
14

14. SUBJECT TERMS
Computational Environment, Wireless Networking, Video Conferencing

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Table of Contents

1 Architecture and Prototype of an Ambient Computational Environment................1

1.1 Ambient Computational Environments ...1
1.2 Research Topics ...4

1.2.1 ACE System Architecture...4
1.2.2 Impact of ACEs on Network Performance, Behavior, and Infrastructure......5
1.2.3 Programming Languages and Run-time Systems ...6

2 Accomplishments ..7
3 Project Information ..9

3.1 Project Personnel ...9
3.2 Project Equipment... 9

4 Conclusion ...9
References...10

 List of Tables

Table 1: List of the ACE Technical Reports ..8

i

Architecture and Prototype of an
Ambient Computational Environment

1 Architecture and Prototype of an Ambient Computational Environment

We proposed to research the design, development and initial implementation of an
Ambient Computational Environment (ACE). The concept begins with the idea that
computation resources, in the broadest sense, are readily available in our offices,
conference rooms, auditoriums, and hallways. Second, users co-opt, with authorization,
the computational resources within their approximate area. Third, users access
computational services that are long-lived and extremely robust. And fourth, users
interact in multiple ways with the Ambient Computational Environments

Second, we proposed to research the impact of ACEs on high-performance networking
systems. The type of traffic in an ACE is likely to be quite different from conventional
ftp, web transfers, and large dataset access. Further, we proposed to investigate the
mechanisms needed to secure transmission of ACE content over widely distributed next
generation internets.

ACEs represent a significant application and networking protocols driving Next
Generation Internets. Networking Systems research has had a difficult time answering
the question, "Where's the data?" Certainly, high-resolution imagery and video is one
source. We believe that low-latency, highly reliable, interactive traffic, as typified by
ACEs, is a major driver for emerging network protocols. We proposed to develop such
traffic applications, the necessary network protocols, and measure network performance,
and do so in the wide-area networking context.

While a comprehensive research program was proposed and a project initiated in June
2000; the project was de-scoped by the government in January 2002 and terminated in
June 2002. During the limited active time of the project we were able to specify and
design many of the software components for ACE and started some of the software
development. This report provides an overview of the project, describes the
documentation presented in a series of technical reports and project management.

1.1 Ambient Computational Environments

The following vignettes illustrate our concepts. Herman completes editing his
presentation in his office environment. He picks up a small lightweight device, we call a
Personal Interactive Device (PID), and heads down the hall toward the conference room.
The conference room is equipped with tabletop display screens, video/computer display
projectors, sound system, microphone system, controllable video camera, and
controllable lighting. Once there, Herman identifies himself through his organizer and
requests his conventional working context be brought up on one of the table-top displays.
He requests, and is granted, access to the conference room resources. From his working

1

context, he arranges to bring his presentation to one of the data projectors, sets lighting
levels , arranging video cameras pointed toward the speaker position, directing a remote
video feed to a second projector, and so forth as he sets up for his presentation. Herman
has co-opted the conference room's resources to support his specific presentation. He
knows he can do the same thing in any of the center's conference rooms or colleague's
offices.

The last time Holly checked, her working context had been running for 497 days. Today,
MIS is scheduled to swap her primary computer, display, and input station for a newer
model. When the MIS support person arrives with the new equipment, Holly clears a
path to her "computer", he quickly unplugs the display, keyboard, and computer modules
to make room for the new equipment, disregarding the fact that the computer is running
and, for the time being, is Holly's port to the computational utility. He plugs in the new
equipment, turns it on, and leaves. Holly identifys herself to the new machine with her
organizer and it quickly displays her working context. Tomorrow when she checks the
"uptime", it will show 498 days.

A few weeks later, Herman has a second presentation. Only this time, when he enters,
the conference room senses his entry and turns on the ambient light. Herman sits at a
table top station and presses his thumb against a reader. His thumb print identifies him
and brings up his working context on the nearby display. Herman directs, through
gestures, voice commands, and conventional computer commands, to put the presentation
on the right screen, point "that video camera" at "that seat", "put the remote video feed on
the left screen", and so forth. The conference room reacts to Herman's voice commands,
gestures, and computer mediated commands. Herman feels immersed in an Ambient
Computational Environment.

The concepts of Ambient Computational Environments are the following:
Computational resources are readily available throughout the space in which

people move. By "computational resources " we mean CPU cycles,
memory, storage, display, wired and wireless communications, sound input
and output, video input and output, i.e. anything connected with computing.

Users co-opt computational resources in their vicinity for their use.
Computational sessions are long-lived, and mobile beyond the extent of

individual machines or instantiations.
The computational environment re-acts to user voice commands, gestures, and

computer commands and maintains an individual model of how specific
users act.

Our vision embeds low cost and high performance future computational units in our
everyday environment. Offices will have computational resources, conference rooms
will have computational resources, taxis will have computational resources, and airplanes
will have computational resources, along with a multitude of other environments. Our
vision distributes computation throughout our environment which can be co-opted for our
use with proper authorization. Identification to the environment either permits or denies
access to the local computational environment. One only need provide their valid

 2

identification to access available resources. This is contrary to the concept that we will
carry around with us a "tool belt" of information appliances to address our needs. The
authors of this proposal are tired are carrying ten pound computers, pagers, cell phones,
and other personal devices everywhere they go.

The Ambient Computational Environment is different from conventional mobile
computing or agent systems. In mobile computing, users lug their own computer to
different locations and their computer maintains their working context. In other cases,
users access a central location for their files and context depending on an underlying
network communications infrastructure. In either case, the focus is on communications
from a fixed resource, e.g. the laptop, back to a single central system. In agent systems,
programs, called "agents," are launched into an interconnected set of computers to
compute and carryout tasks for the launching entity. However, any movement of the user
is ignored. Agents are disembodied from the actual user. Our vision is that users "carry"
their working context with them either via mechanical means (a personal organizer) or
individual identification and the computational environment is available and adapts to the
individual's requirements and behavior.

Our vision is distinct from other recent concepts outlining future computer system
organizations presented by Norman [1] and Kozyrakis and Patterson [2]. In these
proposed concepts, the low cost and high performance of future computational units will
be used to create ever more powerful mobile computers. Norman argues for a plethora of
"information appliances." Kozyrakis and Patterson propose integrating the functions of
calculators, personal organizers, multiple wireless phone services, paging, and
audio/visual remote controls, and broadcast radio into a single personal unit. They
further argue that multi-media applications and data streams will change the basic
underlying computer architecture.

Sun's Jini™ architecture [3] considers "mechanisms for machines or programs to enter
into a federation where each machine or program offers resources to other members of
the federation." While Jini™ technology is one possible technology base for Ambient
Computational Environments, it is only a network technology and does not describe the
necessary services to build a robust environment, nor the necessary knowledge systems
to provide intelligent reaction to user commands.

ACEs will have significant impact on network usage. Implementing persistent storage
will require extremely low latency communications protocols. Interaction between ACE
components is likely to be more of a transactional nature rather than today's client/server
(GET/PUT) nature of the world wide web. Multiple high definition video and audio
streams will require at least two orders of magnitude capacity over today's streaming
video sessions. Understanding these shifts in network load and behavior is a major
component of the proposed research.

Section 1.2 describes important research problems necessary to implement an Ambient
Computational Environment.

 3

1.2 Research Topics

We have identified seven areas of research necessary to build Ambient Computational
Environments:

• System architecture of mobile programming contexts; access to contexts from
multiple, remote locations; and persistent storage of contexts.

• Network protocols to support persistent storage systems over wide areas,
transactional based communications, and highly mobile routing techniques
and network behavior under ACE loads.

• Tools and techniques for access to and interaction with environments.
• Language and run-time systems to support long-lived, mobile computing

contexts.
• Task negotiation among multiple user workspaces.
• Context-sensitive information retrieval.
• Disambiguation of spoken commands and gestures within different

environments and multiple user contexts.

These research topics represent the significant range of activities necessary to build an
ACE. Access to an ACE requires communication services, as well as efficient and
intuitive user interfaces, which in turn require innovative interaction devices and
methods. Environments that support long-term, mobile computations place new demands
on the programming languages, underlying program support systems, and communication
systems. Management of user intentions, history, and command conflicts, as represented
by user workspaces, require negotiation mechanisms among multiple users, their access
devices, the environment, and ongoing computations and services. We believe
information management and retrieval services will be improved by utilizing user
workspaces. Finally, to build truly responsive rooms, we need necessary techniques to
understand the user's commands. A significant effort in combining multiple command
sources, such as speech input, gesture recognition, tactile input, and other sensor input is
necessary to clearly understand the command and respond in an appropriate manner.

This project focused on the first three research areas: System architecture, Network
protocols and behavior, and access to ACEs The remaining part of this section describes
these research areas in more detail and outlines a specific set of research problems raised by
the Ambient Computational Environment concept.

1.2.1 ACE System Architecture

Ambient Computational Environments require significant re-thinking of how applications
are developed and structured and the nature of communications among multiple
components within the ACE. Today's computing/networking is characterized by
client-server relationships between distinct computers and by local applications that
interact with their environment through four primary portals: local graphic display, local
keyboard and mouse inputs, local file systems, and network connections. One might add
a fifth application portal: local temporary storage. To pick-up an application from one
computer and deposit it on another and expect the application to continue operating is

4

well beyond today's operating system and programming language constructs. Even to
consider re-routing an application's graphic display output and keyboard/mouse inputs to
another access point is extremely difficult.

We proposed a threefold approach to building ACE computational components:
(1) Wrapping existing applications to intercept and re-route user input/output

streams (keyboard, mouse, and graphic display);
(2) A run-time environment suitable for moving access points for input/output,

file system, and network connections; and
(3) Programming language constructs to make the creation of ACE components

easier.

As a first step, we considered wrapping existing applications, written for either Linux or
Windows NT, to intercept and re-route user input/output streams (keyboard, mouse, and
graphic display). This is similar to commercial products such as Netopia's Timbuktu and
experimental tools such as Cambridge Research Laboratories' VNC frame buffer
replication. The advantage of this approach is that we can re-route access from multiple
locations to fixed (existing) applications. This approach provided an early concept
demonstration and allowed us to incorporate limited existing applications into the ACE
environment.

We also designed and prototyped a runtime environment for controlling ACE devices.
This work is described further in [4].

We were not able to develop the propsed programming language constructs due to the de-
scoping of the contract.

1.2.2 Impact of ACEs on Network Performance, Behavior, and Infrastructure

ACEs use the network in an entirely different manner than traditional client/server/web
systems. The replication of contexts to insure persistent state requires extremely low
latency, extremely fast transactions. The ability to move computational contexts through
the network and the need to re-assign input/output streams means that we must develop
protocols and routing mechanisms that attend to individual computational sources and
sinks, rather than physical hosts and application ports. Further, we anticipate ACEs to
eventually cross traditional internet address spaces, a common criteria to allow/dis-allow
communications. ACEs re-define how computational structures operate across networks.

We initially identified three kinds of ACE network transactions that differ significantly
from today's network traffic:

(1) ACE traffic will be transactional in nature. There will be short messages that
must be delivered in short order, in a reliable fashion, and crossing the wide
area network.

(2) ACEs will support multiple, high definition video, audio, and graphic streams;
each stream at least two orders of magnitude greater than todays limited
streaming video/audio.

5

(3) ACEs will support highly interactive user input/output systems across the
wide-area network.

We anticipate that we will need to carefully consider the network protocols necessary to
carry out quick transactions, possibly across a wide area network, to maintain
consistency and effect reasonable interactions with the user's contexts. As examples of
transactional network traffic, we consider mouse and/or other pointer input; keyboard
input; and/or voice command input.

A second, important component of the proposed work was the careful measurement and
analysis of the impact of Ambient Computational Environments on the network
performance and behavior. The deployment of ACEs by internet providers will have
significant impact on the services which customers expect from the network, and
consequently will impact the management and control of the network. For example,
customers working from home require access to their work environment.
Communication between customers at home and the ACE services at work requires
reliability and quality of service from the network far beyond what the typical Internet
user receives today. Directory services implemented using protocols such as LDAP with
customer information would likely be required to support the allocation of the
appropriate network resources to the customer connections.

In this vein, we obtained support from and worked with Sprint to extend the prototype
ACE to multiple sites. We designed and build a demonstration prototype (with Sprint
support) at Sprint and interconnected the two ACE sites with the Sprint / KU testbed
network.

Detailed characterization of the impact of ACE concepts on local and wide area networks
was not carried out due to the de-scoping of the contract.

1.2.3 Programming Languages and Run-time Systems

The implementation of an ambient-based programming language also presents
challenges. An obvious approach is to use the Java VM since implementations of it are
becoming ubiquitous. This approach would at a minimum require moving live objects
from JVM to JVM, and this is not currently possible. It is also unlikely that support for
moving live objects will be added any time in the near future, including JDK 2.0 . The
problem is that moving live objects would require significant changes to the linker
semantics of the JVM, and since the JVM's security model is intimately tied with the
linker's semantics, supporting mobile live objects may require radical architecture
changes.

Another approach is to design a successor to the JVM that would support an ambient-
based programming language as well as support existing Java classes. This would allow
existing code to be leveraged in the new system, but since the loader and linker of the
new VM are likely to differ from the JVM, it would probably not be possible to support
all Java programs. Classes inheriting from java lang.ClassLoader, for example, would not
load. The goal, however, would be to preserve compatibility with the existing JVM as
best as possible, and most classes would load unchanged.

6

The successor JVM would include run-time support for storage management and ambient
mobility, but it would make no special provision for fault-tolerant computing. In
particular, a running VM may provide persistent storage or journaling file systems in case
of unexpected termination. This extra robustness is an optimization and may improve
throughput, but it would not affect the underlying programming model since the model
makes few assumptions about quality of service.

Other virtual machine architectures, such as Objective CAML [20] were also considered.

However, due to the de-scoping of the contract, this work was not initiated.

2 Accomplishments

During the shortened duration of the project we were able to design the major
components of an Ambient Computational Environment and implement prototypes for
many of the devices. In particular we implemented prototypes to control cameras,
projectors, sound input and output, video input and output, fingerprint readers, iButton
token readers, a services directory, and workspace access. This work is described in a set
of technical reports described in Table 1 and is available from the Information and
Telecommunications Technology Center.

7

ITTC-FY2001-23150-01 Renzo Hayashi,
Leon Searl
Gary Minden

The Ambient
Computational
Environments
Architecture for
Reliable, Secure, and
Pervasive Computing

December
2000

ITTC-FY2002-23150-02 Renzo Hayashi,
Leon Searl
Gary Minden

ACE Architecture
Design

December
2001

ITTC-FY2001-23150-03 Leon Searl,
Gary Minden

ACE General Service
Daemon Data Thread,
Command Semantics
and Client Command
Design

January 2001

ITTC-FY2001-23150-04 Renzo Hayashi,
Leon Searl
Gary Minden

ACE Project Service
Command Language
Specifications Version
1.0

July 2000

ITTC-FY2001-23150-05 Leon Searl,
Gary Minden

Ambient Computing
Environment: ACE
Service Interface
Specification

January 2001

ITTC-FY2001-23150-06 Renzo Hayashi,
Leon Searl
Gary Minden

ACE Service Directory
Interface Specification

May 2001

ITTC-FY2001-23150-07 James Mauro
Leon Searl,
Gary Minden

ACE Connection
Interface Specification
Version 0.9

January 2001

ITTC-FY2001-23150-08 James Mauro
Leon Searl,
Gary Minden

ACE Project ACE
Authorization Interface
Specification Version
0.1

June 2001

 Table 1: List of the ACE Technical Reports

8

3 Project Information

The ACE project ran from June 1, 2000 through June 30, 2002. The original contract
called for a June 1, 2000 through December 31, 2003 period and $1,460,991 ($1,320,000
Federal and $140,991 The University of Kansas) budget. In January 2002 the government
de-scoped the contract to run through June 30, 2002 and a budget of $650,000 (Federal).

3.1 Project Personnel

Professors Gary J. Minden, Joseph B. Evans, Arvin Agah, and Jeremiah W. James
directed the project. Research Engineer Leon Searl helped organize the project and direct
the graduate students. Four graduate students and four undergraduate students worked on
this project: Julie Johnson, Franklin Jones, Sivaprasath Murugeshan, Rajiv
Ramanasankaran, Vidyaraman Sankaranarayanan, Eric Akers, Ramakrishnan Kalicut,
James Mauro, Sreenivas Penumarthy, Renzo Hayashi, Prasanna Ramasubram

Condor Chou, Balaji Rajagopalan, Jedrzej Miadowicz, and Ramu Narapparaju. Many of
these students continued their work on ACE after the project ended and earned their Masters
of Engineering degree on this project.

3.2 Project Equipment

The ACE project was supported by a National Science Foundation
Research Infrastructure grant EIA-9972843 and The University of Kansas. No equipment
was purchased under the contract.

4 Conclusion

During the limited duration of the project, we successfully designed and implemented

prototypes for an Ambient Computational Environment. The design is documented in a

series of technical reports and students continue to work on the concept.

 9

References
[1] Norman, D. A., The Invisible Computer, The MIT Press, Cambridge, MA, 1998.
[2] Kozyrakis. C. E, and Patterson, D. A., "A New Direction for Computer Architecture Research," IEEE
Computer, Vol. 31, No. 11, November, 1998, pg. 24-32
[3] Waldo, J. "Jini™ Architecture Overview," Sun Microsystems, Palo Alto, CA, 1998.
[4] Hayashi, R., Searl, L, and Minden, G., “The Ambient Computational Environments Architecture for
Reliable Secure, and Pervasive Computing,” December 2000, ITTC Technical Report ITTC_FY2001-TR-
23150-01.

10

